US009411634B2

a2z United States Patent (10) Patent No.: US 9,411,634 B2
Zhang et al. 45) Date of Patent: Aug. 9, 2016
(54) ACTION FRAMEWORK IN SOFTWARE 7,120,762 B2 10/2006 Rajwar et al.
TRANSACTIONAL MEMORY 7,206,805 B1* 4/2007 McLaughlin, Jr. 709/203
7,289,992 B2 10/2007 Walker
LT s . . 7,434,010 B2 10/2008 Duffy et al.
(75) Inventors: Lingli Zhang, Sammamish, WA (US); 7.478,210 B2* 1/2009 Sahaetal. ..ccooooomnen.. 711/159
Yosseff Levanoni, Redmond, WA (US); .
David L. Detlefs, Issaquah, WA (US); (Continued)
Sukhdeep S. Sodhi, San Jose, CA (US);
Weirong Zhu, Kirkland, WA (US) FOREIGN PATENT DOCUMENTS
.) L CN 1139489 1/1997
(73) Assignee: Microsoft Technology Licensing, LL.C, CN 101432702 5/2009
Redmond, WA (US) (Continued)
(*) Notice: Subject to any disclaimer, the term of this
patent is extended or adjusted under 35 OTHER PUBLICATIONS
US.C. 154(b) by 712 days. Bratin Saha et al., McRt-STM: A High Performance Software Trans-
(21) Appl. No.: 12/819,494 actional Memory System for a Multi-core Runtime,Mar. 2006, ACM,
T ’ pp. 187197.%
(22) Filed: Jun. 21,2010 (Continued)
(65) Prior Publication Data
US 2011/0314230 Al Dec. 22, 2011 Primary Examiner — Cam-Y Truong
(74) Attorney, Agent, or Firm — Kevin Sullivan; Aaron
(51) Int.CL Hoff; Micky Minhas
GO6F 17/30 (2006.01)
GO6F 9/46 (2006.01)
GO6F 9/52 (2006.01) (57) ABSTRACT
(52) US.CL
CPC oo GOG6F 9/467 (2013.01); GO6F 9/526 A software transactional memory system implements a light-
(2013.01) weight key-based action framework. The framework includes
(58) Field of Classification Search a set of unified application programming interfaces (APIs)
CPC GOG6F 12/0253; GO6F 8/20; GO6F 8/30; exposed by an STM library that allow clients to implement
GOG6F 8/10; GO6F 8/34; GOGF 17/30008; actions that can be registered, queried, and updated using
GO6F 9/526; GOG6F 9/52; GOG6F 9/466; GO6F specific keys by transactions or transaction nests in STM
17/30067; GO6Q 10/10 code. Each action includes a key, state information, and a set
USPC .. 707/609, 813, 704, 717/100 of one or more callbacks that can be hooked to the validation,
See application file for complete search history. commit, abort, and/or re-execution phases of transaction
. execution. The actions extend the built-in concurrency con-
(56) References Cited trols of the STM system with customized control logics,

U.S. PATENT DOCUMENTS

5,237,673 A *
6,240,413 Bl
6,360,228 B1 *

8/1993 Orbits et al.
5/2001 Learmont
3/2002 Sundara et al.

.................. 711/170

support transaction nesting semantics, and enable integration
with garbage collection systems.

19 Claims, 4 Drawing Sheets

52 A 1

L —— T ————
KEY42 | STATE44 | CALLBACKS 46
so HKeraz [swreas |

ACTION MAP

1

STMLIBRARY

—

B3

IE=

34 Log|

ENVIRONMENT

—>

ot

2

o

124,
SHormic {
preayd Pt
OpenForiead(o1)
vizotitw |
Adtontkey, b1, p2)
. 4
)

I 1%
——
I TooK

I OBJECT

A

a8

X

US 9,411,634 B2
Page 2

(56) References Cited
U.S. PATENT DOCUMENTS

8,060,482 B2* 11/2011 Wangetal. ... 707/703
2005/0086446 Al* 4/2005 McKenneyetal. 711/163
2006/0085591 Al 4/2006 Kumar et al.

2007/0130238 Al* 6/2007 Harrisetal. 707/206

2007/0198521 Al
2009/0006404 Al
2009/0037417 Al
2009/0077082 Al
2009/0125519 Al*
2009/0165006 Al*
2009/0187599 Al
2009/0235254 Al

8/2007 McKenney

1/2009 Magruder et al.

2/2009 Shankar et al.

3/2009 Magruder et al.

5/2009 Robisonetal. ... 707/999.008
6/2009 Cezeetal. ..o 718/102
7/2009 Bruso et al.

9/2009 Michael

2010/0058338 Al* 3/2010 Schneider ..o 718/1
2010/0058362 Al 3/2010 Cownie et al.

2010/0332538 Al* 12/2010 Grayetal. 707/774
2011/0246725 Al 10/2011 Moir et al.

2011/0314230 Al* 12/2011 Zhangetal. ... 711/154

2011/0314244 Al
2012/0158684 Al
2012/0173499 Al
2013/0297967 Al

12/2011 Sodhi et al.
6/2012 Lowenstein et al.
7/2012 Walker

11/2013 Heller, Ir.

FOREIGN PATENT DOCUMENTS

CN 101510162 8/2009
CN 101542437 A 9/2009
OTHER PUBLICATIONS

Bai, et al., “A Key-based Adaptive Transactional Memory Executor”,
Retrieved at <<http://www.cs.wm.edw/~xshen/Publications/

nsfngs07.pdf>>, 21th International Parallel and Distributed Process-
ing Symposium (IPDPS 2007), Mar. 26-30, 2007, pp. 1-8.

Dice, et al., “Understanding Tradeoffs in Software Transactional
Memory”, Retrieved at <<http://www.cs.tau.ac.il/~shanir/nir-pubs-
web/Papers/Understanding.pdf >>, Proceedings of the International
Symposium on Code Generation and Optimization 2007, Mar. 11-14,
2007, pp. 13.

“Net Framework 4 Beta 1 Enabled to Use Software Transactional
Memory (STM.NET Version 1.0)”, Retrieved at <<http://download.
microsoft.com/download/9/5/6/9560741 A-EEFC-4C02-822C-
BBOAFE860E31/STM__User_ Guide.pdf>>, Jul. 24, 2009, pp. 1-84.
Yen, et al., “LogTM-SE: Decoupling Hardware Transactional
Memory from Caches”, Retrieved at << 007 http://www.cs.wisc.edu/
multifacet/papers/hpca07__logtmse.pdf >>, Proceedings of the 2007
IEEE 13thInternational Symposium on High Performance Computer
Architecture, 2007, Feb. 10-14, 2007, pp. 12.

Gottschlich, et al., “An Efficient Lock-Aware Transactional Memory
Implementation”, Retrieved at <<http://ce.colorado.edu/Publica-
tions/icooolps09-latm.pdf >>, Proceedings of the 4th workshop on
the Implementation, Compilation, Optimization of Object-Oriented
Languages and Programming Systems, 2009, Jul. 6-6, 2009, pp. 8.
McDonald, et al., “Transactional Memory: The Hardware-Software
Interface”, Retrieved at <<http://csl.stanford.edu/~christos/publica-
tions/2007. hwswtm.ieeemicro.pdf>>, IEEE Micro, vol. 27, Issue 1,
Jan. 2007, pp. 67-76.

Office Action for U.S. Appl. No. 12/819,499 mailed Apr. 30, 2012 (9
pages).

Final Office Action for U.S. Appl. No. 12/819,499 mailed Aug. 28,
2012 (7 pages).

Notice of Allowance for U.S. Appl. No. 12/819,499 dated Dec. 23,
2013 (29 pgs.).

* cited by examiner

U.S. Patent Aug. 9,2016 Sheet 1 of 4 US 9,411,634 B2

I I]
| KEY 42 | STATE44 | CALLBACKS 46
40 —

i ACTION MAP
52 A
54 /{

STM LIBRARY —

o8]
N
=
O
~
.0

w
o]

14

P\ 28
387 RUNTIME
ENVIRONMENT

STM CODE I ‘16

—> i l I
*e L 39
—>
LOCK &
20 A 32j OBJECT
""’ : J

30

VS
12/
.

atomic {

22 <
OpenForRead (o1)

vl =01.f1 \/ 04

Action(key, p1, p2)

}

U.S. Patent Aug. 9,2016 Sheet 2 of 4 US 9,411,634 B2

ACTION OPERATION

ACTION
IN ACTION MAP?

QUERY AND / OR UPDATE
ACTION

\ 68

NO
y

REGISTER ACTION

' 66

Fig. 2

TRANSACTION EXECUTION
PHASE

l V72

IDENTIFY CALLBACKS
ASSOCIATED WITH THE
TRANSACTION EXECUTION
PHASE

l \ 74

INVOKE CALLBACKS

\ 76

Fig. 3

US 9,411,634 B2

Sheet 3 of 4

Aug. 9, 2016

U.S. Patent

v

9

N
(zd

e

A...

‘1d “Aoy)uonoy

/r:ou LA

(10) peayio4uadQ

} olwoje

V\) A4

§ 0z

3d00 NLS

AR

/
cl’

4371 dNOD

6 /

V\/om

i~ CC

3d00

LFLO = LA
} olwoe
al

v6 '

U.S. Patent Aug. 9,2016 Sheet 4 of 4 US 9,411,634 B2

CODE COMPILER
94 92
RUNTIME || STM CODE
16 12
PROCESSOR 0S STM LIBRARY
PACKAGE(S) 122 14
MEMORY SYSTEM
102/ 104
114
C')TJF;L;L’T DISPLAY PERIPHERAL | | NETWORK
pevices) | | PEVICEES) DEVICE(S) DEVICE(S)
106/ 108/ 110 112

0" Fig. 5

US 9,411,634 B2

1
ACTION FRAMEWORK IN SOFTWARE
TRANSACTIONAL MEMORY

CROSS REFERENCE TO RELATED
APPLICATION

This application is related to co-owned and co-pending
U.S. patent application Ser. No. 12/819,499, which is entitled
“COMPOSITION OF LOCKS IN SOFTWARE TRANSAC-
TIONAL MEMORY?, filed Jun. 21, 2010, and is incorpo-
rated by reference in its entirety.

BACKGROUND

Computer programs may be written to allow different por-
tions of the program to be executed concurrently using
threads or another suitable concurrent execution mechanism.
In order to execute different portions of the program concur-
rently, the computer system or the program typically includes
some mechanism to manage the memory accesses of the
different portions to ensure that the parts access common
memory locations in the desired order.

Transactional memory systems allow programmers to des-
ignate transactions in a program that may be executed as if the
transactions are executing in isolation (i.e., independently of
other transactions and other non-transactional sequences of
instructions in the program). Transactional memory systems
manage the memory accesses of transactions by executing the
transactions in such a way that the effects of the transaction
may be rolled back or undone if two or more transactions
attempt to access the same memory location in a conflicting
manner. Transactional memory systems may be implemented
using hardware and/or software components.

Transactional memory systems, such as software transac-
tional memory (STM) systems, often have limitations on the
types of programming scenarios that are supported. For
example, STM systems do not typically support the use of
thread local memory in transactions, the interoperation
between transactional and traditional locks, the use of static
class initializers and modular initializers, the use of software
lock elision inside transactions, and the use of a customized
abstract concurrency control. While developers of STM sys-
tems may be able to implement separate solutions for each of
the above scenarios as well as other scenarios, separate solu-
tions may be costly and may result in an undesirable archi-
tecture of an STM system. An STM system with a unified and
efficient solution that allows a wide range of programming
scenarios to be supported would be desirable.

SUMMARY

This summary is provided to introduce a selection of con-
cepts in a simplified form that are further described below in
the Detailed Description. This summary is not intended to
identify key features or essential features of the claimed sub-
ject matter, nor is it intended to be used to limit the scope of
the claimed subject matter.

A software transactional memory (STM) system imple-
ments a lightweight key-based action framework. The frame-
work includes a set of unified application programming inter-
faces (APIs) exposed by an STM library that allow clients
(e.g., programmers and/or compilers) to implement actions
that can be registered, queried, and updated using specific
keys by transactions or transaction nests in STM code. Each
action includes a key, state information, and a set of one or
more callbacks that can be hooked to the validation, commit,
abort, and/or re-execution phases of transaction execution.

10

15

20

25

30

35

40

45

50

55

60

65

2

The actions extend the built-in concurrency controls of the
STM system with customized control logics, support trans-
action nesting semantics, and enable integration with garbage
collection systems. The STM system may use the action
framework to solve one or more of STM programming sce-
narios with uniformity and efficiency.

BRIEF DESCRIPTION OF THE DRAWINGS

The accompanying drawings are included to provide a
further understanding of embodiments and are incorporated
in and constitute a part of this specification. The drawings
illustrate embodiments and together with the description
serve to explain principles of embodiments. Other embodi-
ments and many of the intended advantages of embodiments
will be readily appreciated as they become better understood
by reference to the following detailed description. The ele-
ments of the drawings are not necessarily to scale relative to
each other. Like reference numerals designate corresponding
similar parts.

FIG. 1 is a block diagram illustrating an embodiment of a
software transactional memory system.

FIG. 2 is a flow chart illustrating an embodiment of a
method for querying, registering, and updating an action in an
STM system.

FIG. 3 is a flow chart illustrating an embodiment of a
method for invoking a callback implemented by an action at
a transaction execution phase.

FIG. 4 is a block diagram illustrating an embodiment of a
compiler system with a compiler that is configured to compile
source code with software transactional memory transac-
tions.

FIG. 5 is a block diagram illustrating an embodiment of a
computer system configured to implement a software trans-
actional memory system.

DETAILED DESCRIPTION

Inthe following Detailed Description, reference is made to
the accompanying drawings, which form a part hereof, and in
which is shown by way of illustration specific embodiments
in which the invention may be practiced. In this regard, direc-
tional terminology, such as “top,” “bottom,” “front,” “back,”
“leading,” “trailing,” etc., is used with reference to the orien-
tation of the Figure(s) being described. Because components
of embodiments can be positioned in a number of different
orientations, the directional terminology is used for purposes
of'illustration and is in no way limiting. It is to be understood
that other embodiments may be utilized and structural or
logical changes may be made without departing from the
scope of the present invention. The following detailed
description, therefore, is not to be taken in a limiting sense,
and the scope of the present invention is defined by the
appended claims. It is to be understood that the features of the
various exemplary embodiments described herein may be
combined with each other, unless specifically noted other-
wise.

FIG. 1 is a block diagram illustrating an embodiment of a
software transactional memory (STM) system 10. STM sys-
tem 10 represents a runtime mode of operation in a computer
system, such as computer system 100 shown in FIG. 5 and
described in additional detail below, where the computer
system is executing the instructions of STM code 12. STM
system 10 implements a lightweight key-based action frame-
work as described in additional detail below.

STM system 10 includes an STM library 14 and a runtime
environment 16 for executing STM code 12. STM system 10

US 9,411,634 B2

3

is configured to manage the execution of STM transactions 20
that form atomic blocks in STM code 12 to allow transactions
20 to be executed atomically and, if desired, rollback or undo
changes made by transactions 20. To do so, STM system 10
tracks memory accesses by transactions 20 to objects 30
using a log 34 for each executing transaction 20 as indicated
by an arrow 36.

Runtime environment 16 may be any suitable combination
of runtime libraries, a virtual machine (VM), operating sys-
tem (OS) functions, such as functions provided by an OS 122
shown in FIG. 5 and described in additional detail below,
and/or compiler functions, such as functions provided by
compiler 92 shown in FIGS. 4 and 5 and described in addi-
tional detail below.

STM code 12 includes a set of one or more transactions 20
and any suitable non-transactional code. Each transaction 20
includes a sequence of instructions that is designed to execute
atomically, i.e., as if the sequence is executing in isolation
from other transactional and non-transactional code in STM
code 12. Each transaction 20 includes an atomic block des-
ignator 22 or other suitable syntax that indicates that a corre-
sponding portion of STM code 12 is a transaction 20. Trans-
actions 20 also include invocations 26 of STM primitives,
which may be added by a compiler such as a compiler 92
shown in FIGS. 4 and 5 and described in additional detail
below, that call functions in STM library 14. The STM primi-
tives of STM library 14 return results to transactions 20 as
indicated by function calls and returns 28. In addition, each
transaction 20 includes zero or more memory accesses 24 that
read from and/or write to one or more objects 30 as indicated
by arrows 32 and/or one or more statics (not shown).

STM code 12 may include one or more nested transactions
in the set of transactions 20. A nested transaction is a trans-
action 20 that is invoked by another transaction 20, i.e., a
parent transaction. The parent transaction and any transac-
tions 20 that are invoked by the parent transaction or stem
from an invocation from the parent transaction form a trans-
action nest.

STM library 14 includes STM primitives and instructions
executable by the computer system in conjunction with runt-
ime environment 16 to implement STM system 10. The STM
primitives of STM library 14 that are callable by transactions
20 may include management primitives that implement start,
commit, abort, and retry functions in STM library 14. A
transaction 20 calls the start function to initiate the manage-
ment of the transaction 20 by STM library 14. A transaction
20 calls the commit function to finalize the results of the
transaction 20 in memory system 204, if successful. A trans-
action 20 calls the abort function to roll back or undo the
results of the transaction 20 in memory system 204. A trans-
action 20 calls the retry function to retry the transaction 20. In
other embodiments, some or all of the functions performed by
STM library 14 may be included in runtime environment 16
or added to transactions 20 by a compiler such as compiler 92
shown in FIGS. 4 and 5.

The STM primitives of STM library 14 that are callable by
transactions 20 also include memory access primitives that
manage accesses to objects 30 that are written and/or read by
atransaction 20. The memory access primitives access a set of
one or more transactional locks 39 for each object 30. In one
embodiment, STM system 10 uses the object header of
objects 30 to store the corresponding transactional locks 39.
Each transactional lock 39 indicates whether a corresponding
object 30 or portion of a corresponding object 30 is locked or
unlocked for writing and/or reading by transactions 20. When
an object 30 is locked for writing, the corresponding transac-
tional lock 39 includes an address or other reference that

40

45

55

4

locates an entry for the object 30 in a write log 34W in one
embodiment. When an object 30 is not locked for writing, the
corresponding transactional lock 39 includes a version num-
ber of the object 30.

For each non-array object 30, the memory access primi-
tives may access a single transactional lock 39 that locks or
unlocks the non-array object 30 for writing and/or reading by
atransaction 20. For each array object 30, the memory access
primitives may access a set of one or more transactional lock
39 where each transactional lock 39 in the set locks or unlocks
a corresponding portion of the array object 30 for writing
and/or reading. Runtime environment 16 creates and man-
ages the transactional lock(s) 39 for each object 30.

The memory access primitives of STM library 14 generate
and manage a set of one or more STM logs 34 for each
transaction currently being executed. Each set of STM logs
34 includes a write log 34W and a read log 34R in one
embodiment. Each write log 34W includes an entry for each
object 30 that is written by a transaction 20 where each entry
includes an address of a corresponding object 30, the version
number from the transactional lock 39 of the corresponding
object 30, and an address or other reference that locates a
shadow copy of the corresponding object 30. Each read log
34R includes an entry for each object 30 that is read by a
transaction 20 where each entry includes a reference that
locates the transactional lock 39 of a corresponding object 30.

STM library 14 performs the following algorithm, or varia-
tions thereof, to execute each transaction 20. Each time a
transaction 20 is started by a thread of execution, STM library
14 creates and initializes variables used to manage the trans-
action. STM library 14 then allows the transaction 20 to
execute and perform any write and/or read memory accesses
to objects 30 as follows.

To access an object 30 for writing, the transaction 20
invokes a memory access primitive that opens the object 30
for writing. STM library 14 acquires a transactional lock 39
corresponding to the object 30 for the transaction 20 if the
lock is available. If the object 30 is not available (i.e., the
object 30 is locked by another transaction 20), then STM
library 14 detects a memory access conflict between the cur-
rent transaction 20 and the other transaction 20 and may
initiate an abort phase of transaction execution to rollback and
re-execute the current transaction 20. Ifthe object 30 is locked
by the current transaction 20, then STM library 14 has already
acquired the transactional lock 39 corresponding to the object
30 for the transaction 20. Once a corresponding transactional
lock 39 is acquired, STM library 14 causes each write access
32 to be made to either the object 30 itself or a shadow copy
of'a corresponding object 30 (not shown) and causes an entry
corresponding to the write access 32 to be stored in log 34W.
For non-array objects 30, the shadow copy, if used, may be
stored inlog 34W. For array objects 30, a shared shadow copy,
if used, may be stored separately from log 34W.

To access an object 30 for reading, the transaction 20
invokes a memory access primitive that opens the object 30
for reading. If the object 30 is not write locked for an opti-
mistic read access, STM library 14 causes an entry corre-
sponding to the read access to be stored in read log 34R. If the
object 30 is not write locked and does not exceed a maximum
number of pessimistic reads for a pessimistic read access,
STM library 14 acquires a transactional lock 39 for the object
30 ifit has not been acquired, increments a pessimistic reader
count forthe lock 39, and causes an entry corresponding to the
read access to be stored in read log 34R. If the object 30 is
locked by another transaction 20, then STM library 14 detects
a memory access conflict between the current transaction 20
and the other transaction 20 and may initiate the abort phase

US 9,411,634 B2

5

oftransaction execution to rollback and re-execute the current
transaction 20. If the object 30 is locked by the current trans-
action 20, then STM library 14 may cause an entry corre-
sponding to the read access to be stored in read log 34R or set
a flag corresponding to the object 30 in write log 34W to
indicate that the object 30 was also read. STM library 14
causes aread access 32 that occurs before a designated object
30 has been opened from writing by the transaction 20 to be
made directly from the corresponding object 30. STM library
14 causes each read access 32 that occurs after a designated
object 30 has been opened for writing by a transaction 20 to be
made from either the corresponding object 30 directly or the
corresponding shadow copy.

After a transaction 20 finishes executing or re-executing,
STM library 14 performs validation and commit phases of
transaction execution to ensure that the memory accesses by
the transaction 20 did not conflict with the memory accesses
by any other transaction 20. STM library 14 performs the
validation phase by validating the read accesses of the trans-
action 20 to confirm that no other transaction 20 wrote a
memory location corresponding to a read access of the trans-
action 20 subsequent to the read access being performed. If
STM library 14 detects any memory access conflicts between
the current transaction 20 and another transaction 20 during
the validation phase, STM library 14 may initiate the rollback
phase of transaction execution to rollback and re-execute the
current transaction 20.

STM library 14 performs the commit phase by updating
any objects 30 that were modified by the transaction 20 with
the shadow copies used to store the modifications, releasing
any transactional locks 39, and/or storing an updated version
number in the transactional locks 39 of any objects 30 that
were modified by the transaction 20.

After successfully performing the validation and the com-
mit phases of transaction execution, STM library 14 allows
the transaction 20 to complete and allows the thread that
caused the transaction 20 to be executed to execute additional
transactional or non-transactional code in STM code 12.

STM system 10 implements a lightweight key-based
action framework. The framework includes a set of unified
application programming interfaces (APIs) exposed by STM
library 14 that allow clients (e.g., programmers and/or com-
pilers) to implement actions 40 that can be registered, que-
ried, and updated using specific keys 42 by transactions 20 or
transaction nests in STM code 12. Each action 40 includes a
key 42, state information 44, and a set of one or more call-
backs 46 that can be hooked to the validation, commit, abort,
and/or rollback phases of transaction execution. Actions 40
extend the built-in concurrency controls of STM system 10
with customized control logics, support transaction nesting
semantics of STM system 10, and enable integration with
embodiments of STM system 10 that operate with garbage
collection systems. STM system 10 may use the action frame-
work to solve one or more of the STM programming sce-
narios described below with uniformity and efficiency.

For each transaction 20 that registers an action 40, STM
library 14 generates an action map 52 as indicated by an arrow
54. Each action map 52 includes references to the actions 40
registered by STM library 14 in response to action operations
27 from the corresponding transaction 20. STM library 14
registers each action 40 with an associated key 42 that is
provided by a transaction 20 as a parameter with an action
operation 27 into a corresponding action map 52 for the
transaction 20. For transactions 20 that do not provide a key
42 for an action 40 (e.g., transactions 20 that will not query or
update the action 40), STM library 14 may register the action
40 with a global shared key 42 to mimic a simple callback add

10

20

25

30

35

40

45

50

55

60

65

6

and remove functionality. State information 44 and callbacks
46 in each action 40 may be based on a type of the action
operation 27 and/or one or more parameters provided by the
transaction 20 with the action operation 27. Action operations
27 may be added to transactions 20 by a programmer or a
compiler such as compiler 92 shown in FIGS. 4 and 5.

STM library 14 manages actions 40 in each action map 52
using keys 42 instead of simply queuing actions 40 in a list.
By doing so, STM library 14 allows a transaction 20 to query
and update the corresponding actions 40 throughout the
execution of the transaction 20. Accordingly, state informa-
tion 44 and callbacks 46 may be modified by the transaction
20. The combination of keys 42, state information 44, and
callbacks 46 contained by actions 40 may overcome the limi-
tations of a stateless callback infrastructure that prevent cer-
tain STM programming scenarios from being solved. In addi-
tion, the use of a single action 40 for each key 42 may allow
atransaction 20 to execute with increased efficiency by avoid-
ing adding multiple callback invocations for the same pur-
pose.

In addition to associating per-instances state with transac-
tions 20, STM library 14 may also generate keys 42 that
combine instance identifier information with facility identi-
fier information. By doing so, STM library 14 allows regis-
tration of multiple actions 40 with the same facility or across
different facilities and provides for disambiguation between
actions 40 that use object addresses as keys 42 for different
purposes (e.g., shadow copy management and monitor lock
management). In addition, STM library 14 prevents one facil-
ity from accessing the state (i.e., the action 40) maintained by
a different facility. As a result, the action framework of STM
library 14 may be exposed to users in a secure manner.

FIG. 2 is a flow chart illustrating an embodiment of a
method for querying, registering, and updating an action 40 in
STM system 10. In response to an action operation 27 from a
transaction 20 as indicated in a block 62, STM library 14
registers a new action 40 with a key 42, state information 44,
and callbacks 46 in an action map 52 for the transaction 20 if
an action 40 with the associated key 42 is not found in action
map 52 as indicated by blocks 64 and 66. If an existing action
40 with the associated key 42 is found in action map 52, STM
library 14 may return the existing action 40 to the transaction
20 for querying and/or update the state information 44 and
callbacks 46 in the action 40 based on one or more parameters
provided by the transaction 20 with the action operation 27 as
indicated by blocks 64 and 68.

STM system 14 accesses the action map 52 for a transac-
tion 20 at each phase of transaction execution of the transac-
tion 20 to identify actions 40 with callbacks 46 associated
with the transaction execution phases. FIG. 3 is a flow chart
illustrating an embodiment of a method for invoking a call-
back 46 implemented by an action 40 at a transaction execu-
tion phase. In response to reaching a transaction execution
phase for a transaction 20 as indicated in a block 72, STM
library 14 identifies each action 40 in the action map 52 of the
transaction 20 with callbacks 46 associated with the transac-
tion execution phase as indicated in a block 74. STM library
14 invokes the callbacks 46 for the transaction execution
phase, if any, for each action 40 in the action map 52 as
indicated in a block 76.

The action framework APIs of STM library 14 provide
three types of callbacks that allow transactions 20 to hook into
STM system 10. The callbacks include transaction stage call-
backs, nesting integration callbacks, and resource manage-
ment and garbage collection integration callbacks. Each
action 40 provides a customized implementation of these
callbacks if specific behaviors are desired.

US 9,411,634 B2

7

In one embodiment, the transaction stage callbacks include
OnPrepareForCommit, OnCommit, and OnRollback. The
OnPrepareForCommit callback occurs during the validation
phase of a transaction 20. During the validation phase, STM
library 14 detects any actions 40 that implement the OnPre-
pareForCommit callback 46 and invokes any such callbacks
46. The OnPrepareForCommit callback 46 allows a transac-
tion 20 to participate in the validation process that determines
whether a transaction 20 commits or rolls back and re-ex-
ecutes. The OnCommit callback 46 occurs during the commit
phase. During the commit phase, STM library 14 detects any
actions 40 that implement the OnCommit callback 46 and
invokes any such callbacks 46. The OnRollback callback 46
occurs during the rollback phase when a transaction 20 aborts
or rolls back for re-execution. When a transaction 20 reaches
an abort or roll back point, STM library 14 detects any actions
40 that implement the OnRollback callback 46 and invokes
any such callbacks 46. In other embodiments, the transaction
stage callbacks may include other callbacks 46 related to
different phases of execution of transactions 20.

The action framework of STM library 14 includes built-in
support of nesting semantics of actions 40. Transactions 20
may provide a SearchParent parameter with an action opera-
tion 27 to specitfy whether the current action 40 is to be
associated with the innermost nested transaction 20 that is
currently active or with the whole transaction nest. The close
integration with the transaction nesting hierarchy may pro-
vide greater flexibility and expressiveness to transactions 20
that implement actions 40. Accordingly, transactions 20 may
choose either flat or nesting semantics for their actions 40.

In one embodiment, the nesting integration callbacks
include DeferToParentOnCommit, DeferToParentOnAbort,
MergeToParent, and SurviveOnRollback callbacks 46. The
DeferToParentOnCommit and DeferToParentOnAbort call-
backs 46 allow nested transactions 20 to specify whether an
action 40 is to be deferred to a parent transaction 20 when
committing (DeferToParentOnCommit) or aborting (Defer-
ToParentOnAbort) the nested transactions 20. For actions 40
that are deferred to a parent transaction 20, STM library 14
registers or updates a corresponding action 40 in the action
map 52 of the parent transaction 20. The MergeToParent
callback allows a nested transaction 20 to specify how to
merge the state of an action 40 into an action 40 with the same
key 42, if any, in the action map 52 of the parent transaction
20. The SurviveOnRollback callback 46 causes an action 40
to be maintained, rather than deleted, in action map 52 when
atransaction 20 rolls back. In other embodiments, the nesting
integration callbacks may include other callbacks 46 related
to nested transactions 20.

For embodiments of STM system 10 that work with lan-
guages powered by garbage collection, such as C# or Java,
garbage collection integration with STM library 14 ensures
correctness. I[f STM system 10 holds a reference to a memory
location that is managed by the garbage collector, STM sys-
tem 10 reports the reference to the garbage collector so that
the reference can be updated correctly during garbage collec-
tions. Because actions 40 may hold managed references,
STM library 14 provides garbage collection hooks to let
actions 40 report any references to the garbage collector.

In one embodiment, the resource management and garbage
collection integration callbacks include Release and OnGC-
Scan callbacks 46. The Release callback 46 occurs during the
commit phase where STM library 14 to allow a transaction 20
to release a resource. The OnGCScan callback 46 occurs
during garbage collection to allow STM library 14 to report
references in actions 40 to the garbage collector. In other
embodiments, the resource management and garbage collec-

10

15

20

25

30

35

40

45

50

55

60

65

8

tion integration callbacks may include other callbacks 46
related to resource management and garbage collection.

STM library 14 uses the action framework to solve one or
more STM programming scenarios such as supporting the use
of'thread local memory in transactions 20, providing interop-
eration between transactional and traditional locks, support-
ing static class initializers and modular initializers in trans-
actions 20, allowing for software lock elision inside
transactions 20, and providing a customized abstract concur-
rency control.

By definition, thread local memory (i.e., local variables,
thread static fields, etc.) will only be accessed by an owning
thread. Accordingly, thread local memory may be managed
without using the standard STM memory concurrency con-
trol logics of STM library 14 (e.g., logs 34). To support failure
atomicity, however, STM library 14 backs up the initial values
of any thread local memory used by a transaction 20 so that
the initial values can be recovered if the transaction 20 does
not succeed (i.e., rolls back or is aborted). STM library 14
handles pointer-to-locals (including struct types) across
method boundaries by combining with byref analysis.

STM library 14 may be configured to implement a memory
undo action 40 using the action framework to handle thread
local memory accesses by transactions 20. For each thread
local memory region, the memory undo action 40 caches the
initial values of the thread local memory region if the region
may be modified and recovers the initial values in case the
transaction 20 is rolled back or aborted. The memory undo
action 40 uses the base address of the thread local memory
region as the key 42. By doing so, STM library 14 can register
a single memory undo action 40 per thread local memory
region and perform a single undo action per thread local
memory region if a transaction 20 does not succeed. As a
result, STM library 14 may handle thread local memory
accesses without registering multiple actions 40 for the same
thread local memory region. STM library 14 implements the
memory undo action 40 with a per transaction scope and does
not merge memory undo actions 40 into parent transactions
20. Each transaction 20 registers a set of memory undo
actions for accessed local memory regions before the trans-
action 20 starts. This allows for partial rollback ofthread local
memory when a nested transaction 20 rolls back or aborts.

STM library 14 may be also configured to provide inter-
operation between transactional and traditional locks using
the action framework. By doing so, STM library 14 may
provide increased compatibility and composability between
STM system 10 and any non-transactions code in STM code
12. To provide isolation between transactions 20 and non-
transactional code in STM code 12, STM library 14 registers
a lock interoperation action 40 to cause a transaction 20 to
hold each lock 39 taken by the transaction 20 until the whole
transaction nest that includes the transaction 20 commits
successfully. The lock interoperation action 40 causes the
locks 39 to be held even if there are unlock operations inside
the transaction 20 or transaction nest. Because STM library
14 uses a key 42 to query each lock interoperation action 40
and the lock releases are deferred until the whole transaction
nest commits successfully, the lock interoperation action 40
allows a single physical lock operation to be performed for
each lock 39 in a transactional nest. STM library 14 updates
lock interoperation actions 40 to maintain a lock and unlock
recursion count to allow lock operations to be compensated
when a transaction 20 aborts or a transaction nest commits.
STM library 14 implements lock interoperation actions 40
with a per transaction scope but merges lock interoperation
actions 40 to any parent transaction 20 upon abort or commit.

US 9,411,634 B2

9

When a transaction 20 with one or more lock interopera-
tion actions 40 commits, STM library 14 performs the
deferred lock operations based on the recursion count to
correctly set the state of the locks 39. If a transaction 20 with
one or more lock interoperation actions 40 aborts, STM
library 14 compensates for any acquired locks by performing
corresponding lock release operations for each acquired lock.
Because lock releases are deferred until the transaction nest
commits, STM library 14 ignores any lock releases when a
transaction 20 aborts.

Additional details of the use of lock interoperation actions
40 may be found in U.S. patent application Ser. No. 12/819,
499, which is entitled “COMPOSITION OF LOCKS IN
SOFTWARE TRANSACTIONAL MEMORY™, filed con-
currently herewith, and is incorporated by reference in its
entirety.

In addition, STM library 14 may be configured to support
static class initializers and modular initializers in transactions
20 using the action framework. In systems such as Microsoft-
.NET or the Java Virtual Machine, only one thread is allowed
to perform the static class initialize of a particular class or the
modular initialize of a module. To avoid potential data races
in such initializations, STM library 14 registers an initializer
action 40 whenever an initializer is encountered in a transac-
tion 20 and immediately rolls back and re-executes the trans-
action 20. The initializer action 40 implements the OnRoll-
back callback 46 which is invoked when STM library 14 rolls
back the transaction. The OnRollback callback 46 for the
initializer action 40 performs the intended initialization prior
to the transaction being re-executed. The initializer action 40
has a transaction nest scope, i.e., the whole transaction nest
only has a single initializer action 40 per initializer.

STM library 14 may further use the action framework to
allow software lock elision inside transactions 20. Software
lock elision is an optimization technique that relies on the
assumption that no contention will occur on lock operations
(e.g., read and write locks on objects 30) most of the time. For
each lock operation of a transaction 20, STM library 14
registers a lock elision action 40 that captures the current state
of'the lock 39 of an object 30 and speculatively executes the
transaction 20 without actually locking the object 30. During
the validation phase, STM library 14 invokes the OnPrepare-
ForCommit callback 46 for each lock elision action 40 to
determine whether the corresponding locks 39 have changed.
If any locks 39 have changed, STM library 14 causes the
transaction 20 to roll back and re-execute. STM library 14
implements lock elision actions 40 with a per transaction
scope but merges lock elision actions 40 to any parent trans-
action 20 upon abort or commit.

STM library 14 may also use the action framework to
provide programmers with a customized abstract concur-
rency control. At times, conflicts detected by STM library 14
of low level reads and writes may be false conflicts. For
example, in a chain-based hash table, an insertion operation
touches a bucket header and entries in a linked list along the
way to the appropriate position in the hash table. The insertion
operation will conflict with any transaction 20 that updates
the bucket or any of the entries even though semantically
disjoint entries are actually being accessed. To avoid such
false conflicts, programmers can forgo the low level memory
concurrency control offered by STM library 14 (e.g., by sup-
pressing the concurrency controls or by using open nesting)
and manage their data structures using a high level abstract
concurrency control provided by the action framework.

STM library 14 implements one or more customized con-
trol actions 40 to allow programmers to provide customized
concurrency control algorithms with the callback information

10

15

20

25

30

35

40

45

50

55

60

65

10

46. The customized control actions 40 may use the OnPre-
pareForCommit callback 46 to influence the decision of
whether a transaction 20 can be committed or not, the
OnCommit callback 46 to flush out any deferred effects that
are held off in a transaction 20, and the OnRollback callback
46 to provide any compensating actions. If nesting semantics
are desired, the DeferToParentOnCommit, DeferToParen-
tOnAbort, MergeToParent, and SurviveOnRollback callback
information 46 may be used to express the desired behaviors.

FIG. 4 is a block diagram illustrating an embodiment of a
compiler system 90 with a compiler 92 that is configured to
compile source code 94 with STM transactions 20.

Compiler system 90 represents a compile mode of opera-
tion in a computer system, such as computer system 100
shown in FIG. 5 and described in additional detail below,
where the computer system is executing instructions to com-
pile code 94 into STM code 12. In one embodiment, compiler
system 90 includes a just-in-time (JIT) compiler system that
operates in the computer system in conjunction with a runt-
ime environment executed by an operating system (OS), such
as OS 122 shown in FIG. 5 and described in additional detail
below, STM library 14, and any additional runtime libraries
(not shown). In another embodiment, compiler system 90
includes a stand-alone compiler system that produces STM
code 12 for execution on the same or a different computer
system.

Code 94 includes a set of one or more STM transactions 20.
Each STM transaction 20 includes an atomic block designa-
tor 22 that indicates to compiler 92 that a corresponding
portion of code 94 is an STM transaction 20. Each STM
transaction 20 may include zero or more memory accesses 24
that read from and/or write to an object 30. Each STM trans-
action 20 may also include zero or more action operations 27
(not shown) that generate, query, or update actions 40. Code
94 may be any suitable source code written in a language such
as Java or C# or any suitable bytecode such as Common
Intermediate Language (CIL), Microsoft Intermediate Lan-
guage (MSIL), or Java bytecode.

Compiler 92 accesses or otherwise receives code 94 with
transactions 20 that include memory accesses 24. Compiler
92 identifies memory accesses 24 and compiles code 94 into
STM code 12 with invocations 26 of STM primitives in STM
library 14 for each memory access 24. Compiler 92 may also
identify instances where an action 40 may be used and com-
piles code 94 into STM code 12 with action operations 27 for
each instance where an action 40 may be used. Compiler 92
performs any desired conversion of the set of instructions of
code 94 into a set of instructions that are executable by a
designated computer system and includes the set of instruc-
tions in STM code 12.

FIG. 5 is a block diagram illustrating an embodiment of a
computer system 100 configured to implement STM system
10.

Computer system 100 includes one or more processor
packages 102, memory system 104, zero or more input/output
devices 106, zero or more display devices 108, zero or more
peripheral devices 110, and zero or more network devices
112. Processor packages 102, memory system 104, input/
output devices 106, display devices 108, peripheral devices
110, and network devices 112 communicate using a set of
interconnections 114 that includes any suitable type, number,
and configuration of controllers, buses, interfaces, and/or
other wired or wireless connections.

Computer system 100 represents any suitable processing
device configured for a general purpose or a specific purpose.
Examples of computer system 100 include a server, a per-
sonal computer, a laptop computer, a tablet computer, a per-

US 9,411,634 B2

11

sonal digital assistant (PDA), a mobile telephone, and an
audio/video device. The components of computer system 100
(i.e., processor packages 102, memory system 104, input/
output devices 106, display devices 108, peripheral devices
110, network devices 112, and interconnections 114) may be
contained in a common housing (not shown) or in any suitable
number of separate housings (not shown).

Processor packages 102 each include one or more execu-
tion cores. Each execution core is configured to access and
execute instructions stored in memory system 104. The
instructions may include a basic input output system (BIOS)
or firmware (not shown), OS 122, STM code 12, STM library
14, runtime environment 16, compiler 92, and code 94. Each
execution core may execute the instructions in conjunction
with or in response to information received from input/output
devices 106, display devices 108, peripheral devices 110,
and/or network devices 112.

Computer system 100 boots and executes OS 122. OS 122
includes instructions executable by execution cores to man-
age the components of computer system 100 and provide a set
of functions that allow programs to access and use the com-
ponents. OS 122 executes runtime environment 16 to allow
STM code 12 and STM library to be executed. In one embodi-
ment, OS 122 is the Windows operating system. In other
embodiments, OS 122 is another operating system suitable
for use with computer system 100.

Computer system 100 executes compiler 92 to generate
STM code 12 from code 94. Compiler 92 accesses or other-
wise receives code 94 and transforms code 94 into STM code
12 for execution by computer system 100. Compiler 92 per-
forms any desired conversion of the set of instructions of code
94 into a set of instructions that are executable by computer
system 100 and includes the set of instructions in STM code
12. Compiler 92 also identifies blocks 20 in code 94 from
transaction designators 22 and modifies blocks 20 in STM
code 12 to include invocations of STM primitives 26.

In one embodiment, compiler 92 includes a just-in-time
(JIT) compiler that operates in computer system 100 in con-
junction with OS 122, runtime environment 16, and STM
library 14. In another embodiment, compiler 92 includes a
stand-alone compiler that produces STM code 12 for execu-
tion on computer system 100 or another computer system (not
shown).

Computer system 100 executes runtime environment 16
and STM library 14 to allow STM code 12, and transactions
20 therein, to be executed in computer system 100 as
described above.

Memory system 104 includes any suitable type, number,
and configuration of volatile or non-volatile storage devices
configured to store instructions and data. The storage devices
of memory system 104 represent computer readable storage
media that store computer-executable instructions including
STM code 12, STM library 14, runtime environment 16, OS
122, compiler 92, and code 94. The instructions are execut-
able by computer system 100 to perform the functions and
methods of STM code 12, STM library 14, runtime environ-
ment 16, OS 122, compiler 92, and code 94 as described
herein. Memory system 104 stores instructions and data
received from processor packages 102, input/output devices
106, display devices 108, peripheral devices 110, and net-
work devices 112. Memory system 104 provides stored
instructions and data to processor packages 102, input/output
devices 106, display devices 108, peripheral devices 110, and
network devices 112. Examples of storage devices in memory
system 104 include hard disk drives, random access memory
(RAM), read only memory (ROM), flash memory drives and
cards, and magnetic and optical disks such as CDs and DVDs.

10

15

20

25

30

35

40

45

50

55

60

65

12

Input/output devices 106 include any suitable type, num-
ber, and configuration of input/output devices configured to
input instructions or data from a user to computer system 100
and output instructions or data from computer system 100 to
the user. Examples of input/output devices 106 include a
keyboard, a mouse, a touchpad, a touchscreen, buttons, dials,
knobs, and switches.

Display devices 108 include any suitable type, number, and
configuration of display devices configured to output textual
and/or graphical information to a user of computer system
100. Examples of display devices 108 include a monitor, a
display screen, and a projector.

Peripheral devices 110 include any suitable type, number,
and configuration of peripheral devices configured to operate
with one or more other components in computer system 100
to perform general or specific processing functions.

Network devices 112 include any suitable type, number,
and configuration of network devices configured to allow
computer system 100 to communicate across one or more
networks (not shown). Network devices 112 may operate
according to any suitable networking protocol and/or con-
figuration to allow information to be transmitted by computer
system 100 to a network or received by computer system 100
from a network.

Although specific embodiments have been illustrated and
described herein, it will be appreciated by those of ordinary
skill in the art that a variety of alternate and/or equivalent
implementations may be substituted for the specific embodi-
ments shown and described without departing from the scope
of'the present invention. This application is intended to cover
any adaptations or variations of the specific embodiments
discussed herein. Therefore, it is intended that this invention
be limited only by the claims and the equivalents thereof.

What is claimed is:
1. A method performed by a software transactional
memory (STM) system in a computer system, the method
comprising:
receiving, with an action framework in the STM system, a
first action operation with a first key from a transaction
in STM code, each action includes a key, state informa-
tion, and a set of one or more callbacks that can be
hooked to at least one of validation, commit, abort, and
re-execution phases of transaction execution, said each
action provides a customized implementation of the one
or more callbacks;
registering, with the action framework, a first action corre-
sponding to the first action operation with the first key,
the first key allowing the transaction to subsequently
perform at least one of querying and updating the first
action and the first action implementing a callback with
a customized implementation;

receiving, with the action framework, a second action
operation with a second key from the transaction; and

in response to the second key differing from the first key,
registering, with the action framework, a second action
corresponding to the second action operation in a first
action map with the second key and a callback imple-
mented by the second action operation.

2. The method of claim 1 further comprising:

performing at least one of querying and updating the first

action in response to the second action operation with
the second key from the transaction.

3. The method of claim 1 further comprising:

invoking the callback in the first action in response to

reaching a transaction execution phase corresponding to
the transaction.

US 9,411,634 B2

13

4. The method of claim 3 wherein the transaction execution
phase is one of a validation phase, a commit phase, and a
rollback phase.

5. The method of claim 1 further comprising:

generating an action map for the transaction in response to

the first action operation from the transaction.

6. The method of claim 1 further comprising:

merging the first action into an action map of a parent

transaction of the transaction.

7. The method of claim 1 further comprising:

invoking the callback in the first action in response to a

garbage collection.

8. The method of claim 1 wherein the first action is a
memory undo action corresponding to thread local memory
accessed by the transaction.

9. The method of claim 1 wherein the first action is a lock
interoperation action corresponding to a traditional lock
accessed by the transaction.

10. The method of claim 1 wherein the first action is an
initializer action corresponding to an initialization performed
by the transaction that can only be done once and cannot be
rolled back.

11. The method of claim 1 wherein the first action is a lock
elision action corresponding to a lock elision by the transac-
tion.

12. The method of claim 1 wherein the first action is a
customized control action corresponding to a concurrency
control algorithm of the transaction.

13. A method performed by a software transactional
memory (STM) system in a computer system, the method
comprising:

receiving, with an action framework in the STM system, a

first action operation with a first key from a transaction
in STM code, each action includes a key, state informa-
tion, and a set of one or more callbacks that can be
hooked to at least one of validation, commit, abort, and
re-execution phases of transaction execution, said each
action provides a customized implementation of the one
or more callbacks;

updating, with the action framework, a first action with the

first key in a first action map corresponding to the trans-
action;
receiving, with the action framework, a second action
operation with a second key from the transaction; and

in response to the second key differing from the first key,
registering, with the action framework, a second action
corresponding to the second action operation in the first
action map with the second key and a callback imple-
mented by the second action operation.

15

20

25

30

40

45

50

14

14. The method of claim 13 further comprising:

invoking a callback implemented by the first action in
response to reaching a transaction execution phase cor-
responding to the transaction.

15. The method of claim 13 further comprising:

merging the first action into a second action map of a parent
transaction of the first transaction.

16. A computer readable storage medium, which does not

include transitory propagating signals, storing computer-ex-
ecutable instructions that, when executed by a computer sys-
tem, perform a method comprising:

receiving, with an action framework in a software transac-
tional memory (STM) system in the computer system, a
first action operation with a first key from a first trans-
action in STM code, each action includes a key, state
information, and a set of one or more callbacks that can
be hooked to at least one of validation, commit, abort,
and re-execution phases of transaction execution, said
each action provides a customized implementation of
the one or more callbacks;

registering, with the action framework, a first action corre-
sponding to the first action operation with the first key if
the first action has not been registered when the first
action operation is received, the first action implement-
ing a callback with a customized implementation;

performing, with the action framework, at least one of
querying and updating the first action in response to the
first action operation if the first action has been regis-
tered when the first action operation is received;

receiving, with the action framework, a second action
operation with a second key from the transaction; and

in response to the second key differing from the first key,
registering, with the action framework, a second action
corresponding to the second action operation in a first
action map with the second key and a callback imple-
mented by the second action operation.

17. The computer readable storage medium of claim 16, the

method further comprising:

determining whether the first action has been registered
when the first action operation is received using the first
key.

18. The computer readable storage medium ofclaim 17, the

method further comprising:

invoking the callback in the first action in response to
reaching a transaction execution phase corresponding to
the transaction.

19. The computer readable storage medium of claim 18, the

method further comprising:

merging the first action into a third action of a second
transaction in response to the first transaction commit-
ting, the third action being a parent transaction of the
first transaction.

